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Matched asymptotic expansions are used to analyse the flow past a two-dimensional 
planing surface in shallow water. A simple momentum conservation relation is 
obtained connecting leading-edge height, trailing-edge height, and ambient water 
depth, from which the (initially unknown) wetted length can be determined. This 
relationship is confirmed by an explicit solution for the flow in the splash zone near 
the leading edge. The theory is used to  discuss the dynamics of a freely skimming 
board carrying a given weight whose point of application is a given distance ahead 
of the trailing edge. 

1. Introduction 
A surf skimmer (or ‘skimboard’) is a flat circular disk about a metre in diameter, 

which seems to be able to travel for quite long distances (5-10 m) in very shallow 
(1-2 em) water, carrying the weight of a human a t  speeds like 2 4  m/s. Clearly the 
hydrodynamics of the flow of water beneath the skimmer must somehow be such as 
to produce high lift at low drag. 

I n  the present paper, as in the only apparent previous study, by Edge (1968), we 
assume one-dimensional flow and neglect gravity. The latter assumption simply 
means that hydrostatic forces are negligible compared to hydrodynamic forces, 
which is justified by the fact that  the Froude number takes quite high values, 
typically 5 to 10, according to the velocity and depth scales mentioned above. 
However, there are nevertheless some finite Froude-number questions, to which we 
address ourselves below. 

In  order to justify the one-dimensional flow assumption, we must first neglect all 
lateral flow components, in spite of the fact that the board has a circular plan form. 
Observation of actual skimmers in action suggests that streamlines are diverted 
laterally not more than about 30°, and it  is reasonable to  model at least the most 
important portion of the flow near the centreplane as if it were confined to  that plane. 
The fact that  lateral flow actually occurs is however of vital importance, as we shall 
see, even though we make no attempt here to  compute it. If it is desired to 
incorporate lateral-flow considerations into the solution, the present work has a 
relatively easy extension to a ‘ stripwise ’ theory analogous to aerodynamic lifting- 
line theory, and a harder extension to a fully three-dimensional theory analogous to 
lifting-surface theory (see Tuck 1983 ; Read 1989). 

Having neglected lateral flow, the resulting two-dimensional flow then becomes 
approximately one-dimensional because of the small depth-to-chord ratio, so that 
the vertical velocity component is neglected relative to the streamwise component u, 
in a frame of reference fixed in the skimmer. One-dimensional continuity implies that 
uh is constant, where h is the local water depth beneath the skimmer. The 
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appropriate constant can be written as uT h,, if uT and h, are the values of velocity 
and depth a t  the trailing edge. 

Then (neglecting viscosity) Bernoulli’s equation gives the pressure as 

p = constant - ipp.2 = po +$pug [ 1 - 91, 
where p ,  is the pressure at the trailing edge, which we can take to be atmospheric 
pressure. If we assume that uT and the wetted area A of the skimmer are both known, 
we can integrate the above pressure to provide the net lift per unit span, and this was 
done by Edge ( 1968), after an additional (unnecessary) small-incidence approxi- 
mation. 

It is typical of this kind of extreme ground effect (Tuck 1981) that the resulting 
lift coefficient is of order one. This simply means that the quantity in square brackets 
in (1.1) takes order-one values, so that the net lift is of the order of puk A .  If at the same 
time we assume that u, takes values of the same order of magnitude as the skimmer’s 
speed, we obtain lift values of the order of 100-200 kg-weight, so that human riders 
are amply supported. Meanwhile there is a small skin-friction drag, plus a splash drag 
that is minimized by keeping the angle of attack as low as possible. This will be 
discussed in more detail later. 

There are a few unanswered questions if we wish to obtain quantitative values for 
the forces on the skimmer. The pressure is expressed in terms of u,, and we still have 
to  relate u, to  the actual speed u, of the board, i.e. to  the apparent free-stream speed 
a t  upstream infinity. Edge (1968) states that, ‘for the board to remain afloat, the 
water entering at  the front must come out a t  the back’. The implication of this 
statement is that uT is determined by mass conservation, i.e. 

where h, is the undisturbed water depth. Thus, if as we assume, h, < h,, then 
uT > u,, and the water ‘leaves with a higher velocity as it is squirted out behind’. 

Unfortunately, the assumption u, > u, is untenable in the absence of viscous and 
gravitational effects. If the stream emerging from the trailing edgc is of magnitude 
greater than uo, there must eventually occur somewhere downstream a hydraulic 
jump a t  which the velocity returns to  the value u, and the height to the value h,. But 
as is well known (see e.g. Stoker 1957, p. 326), such a hydraulic jump can only occur 
when one stream is subcritical and the other is supercritical. If uT > u,, this means 
that the basic flow must be subcritical, whereas the present flow is so far into the 
supercritical range that gravity is negligible. Such a hydraulic jump cannot (and does 
not) occur. 

What actually happens is that the skimmer skims. That is, it removes a portion of 
the undisturbed layer of water. I n  a model lacking lateral flow, this presents an 
apparent paradox, since we must query where the skimmed fluid goes, but in practice 
it is thrown sideways. In any case, we must abandon the mass conservation relation 
(1.2) between the trailing-edge velocity and the free-stream speed. A t  the same time, 
if we demand that the fluid detaches smoothly from the trailing edge, so that the one- 
dimensional assumption holds in its neighbourhood, then the only possible flow there 
is a uniform stream of magnitude uT. Bernoulli’s equation then demands that this 
stream has the same speed u, = uo as the incident flow upstream (relative to the 
skimmer), i.e. in a fixed frame of reference, the skimmer just leaves the water a t  rest 
behind it. 

The other major difficulty with the above discussion is that in practice the wetted 
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area A is also not known in advance. That is, even if the trailing edge is sharp, so that 
its position is known in advance, the leading edge can lie anywhere forward of that  
point. Indeed, this is the secret of successful skimboard riding. The rider adjusts the 
position of his centre of gravity on the board so as to  control the angle of attack and 
hence the wetted length. Too much angle of attack leads to too small a wetted length, 
and hence too little lift; too small an angle of attack also gives too little lift, so the 
good rider needs to pick the correct compromise. Any analysis that fails to 
incorporate this phenomenon has missed the whole point of the device. 

This need to determine the wetted length as part of the solution is common in 
planing surface theory (see e.g. Squire 1957 ; Tuck 1989). Indeed, the present problem 
is nothing more than the shallow-water limit of the problem of planing on water of 
finite depth, as solved exactly for the special case of a flat plate by Green (1936). 
However, the shallow-water limit yields simpler and more general results by use of 
matched asymptotic expansions. 

We provide a derivation of this theory in subsequent sections. It is worth quoting 
now one of the most important results, namely an explicit formula 

h, = 2ho-hT+2(ho(ho-hT))~, (1.3) 

for the leading-edge water depth h, in terms of the trailing-edge depth h, and the 
undisturbed depth ho. This equation essentially determines the wetted length, since 
if h, is given, the leading edge of the wetted region must adjust itself until the water 
depth at that point is given by (1.3). 

The actual situation is a little more complicated than that, since h, is not given, 
but itself must be determined (together with the angle of attack) by the dynamics of 
the skimmer and rider. We show here how this can be done, by first computing the 
lift and moment for a fixed skimmer orientation, and then re-plotting these results 
with the lift and location of its centre of pressure assumed prescribed, and the 
orientation as output. 

2. Planing formulation 

length) 1, on water of depth h,, all that  is needed in principle is the limit when 
If we simply interpret the surf skimmer as a planing surface of chord (wetted 

F = ho/E, (2.1) 

tends to zero, of results available by solving the full three-dimensional planing 
surface problem, e.g. as done by Green (1936) for a flat plate. However, the theory 
for finite G is very complicated, and the final results are expressed in terms of complex 
elliptic functions. Carrying out the small F limit on these results is neither simple 
mathematically nor illuminating physically. Hence we derive the small G limit 
directly from the boundary-value problem by matched asymptotic expansions, as 
follows. 

If E is small, then the planing surface must also be a t  a small angle of attack (or 
else i t  hits the bottom), and we assume that the angle of attack a and E are 
comparable in order of magnitude. I n  that case there is a finite (neither necessarily 
large nor small) contraction ratio 

between the trailing and leading depths, as indicated in figure 1. Neither of these 
depths need equal the undisturbed depth h, of water, interpreted now as the depth 
of a uniform stream uo far upstream of a fixed skimmer. 

h = h,/h, (2.2) 
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FIGURE 1 .  Sketch of flow and geometry. 

Indeed, our assumption now is the standard one in planing surface theory that the 
skimmer throws a portion of the incident stream ahead of itself as a jet. This means 
that there must he a stagnation point near the leading edge of the skimmer, and a 
submerged stagnation streamline meeting it from upstream. All fluid above the 
stagnation streamline enters the jet; all below it passes under the skimmer and out ” 
at its trailing edge. 

If we assume smooth detachment at this trailing edge, then the only possible one- 
dimensional flow with atmospheric pressure on its free surface at and downstream of 
the trailing cdge is a uniform stream of magnitude u,, and uniform depth h,. But then 
by conservation of mass in the flow beneath the skimmer, the far-upstream height of 
the stagnation streamline must also be hT. Hence the ultimate jet thickness must be 

hJ = ho-hT, (2.3) 

noting that the constant-speed free-surface condition demands that (in the absence 
of gravity) the jet ultimately moves as a uniform stream at speed uo, with a thickness 
the same as the excess height of the undisturbed free surface over that of the 
stagnation streamline. 

The direction of the ultimate jet is not as clear as is its magnitude. In the absence 
of gravity and any three-dimensional effects, the jet remains attached to the lower 
surfaoc of the skimmer so long as that exists. When the jet reaches the forward tip 
of the skimmer, it becomes a free jet which (in the absence of gravity) continues for 
ever without further change of direction, although its angle may differ slightly from 
that of the skimmer, e.g. may involve a small upward deflection. On the other hand, 
if the skimmer is effectively unlimited in its forward extent, the jet remains attached 
until gravity finally causes it to fall, but we assume that this occurs so far forward 
as to have no effect on the main flow. In  practice, this would seem to require some 
form of ‘bucket’ far upstream to catch the falling jet before it splashed. More 
realistically, three-dimensional effects would divert the splash away from the most 
important centreline domain of flow. 

Hence whatever jet is created, of thickness h,, is lost to the flow beneath the 
skimmer, and in that sense, mass is not conserved. What then do we mean by the 
leading-edge height h,! Where indeed is the leading edge, if the skimmer is 
effectively wetted infinitely far forward by an attached jet! The issue of dynamic 
determination of the location of the leading edge is of profound importance in all 
planing surface theory, no less here. 

What is clear is that, in the limit as both a+O and E + O ,  the zone where the jet 
and the stagnation point are created has a small longitudinal (horizontal) extent 
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O(h,) 4 1,. For example (see Appendix) the point of near-maximum curvature where 
the jet is being bent back, and the free surface is locally vertical, is a distance 
O(h,) = O(h,) ahead of the stagnation point. This zone is one where horizontal and 
vertical velocity components are comparable, but it is a zone of vanishing size 
relative to the horizontal lengthscale I ,  of the skimmer. Hence i t  is an ‘inner region’ 
in the sense of matched asymptotic expansions, whose detail we now examine. 

3. Inner expansion near the leading edge 
The flow in the leading-edge region is as sketched in figure 2. Note that, in the limit 

as a + 0, the skimmer looks like a flat plate parallel to the bottom, i.e. the flow takes 
place in a channel of width h, between parallel plates. It is convenient to consider h, 
as the height of the stagnation point ; however, again note that the height is uniform 
throughout the (small) horizontal extent of the leading-edge zone. 

The flow that takes place in this inner region is as follows. An incoming stream u, 
of height h, < h, from x = - 03 is partly deflected back to x = - 03, and partly flows 
onward to x = + 03, where it fills the whole channel but moves at reduced speed uL. 
If the jet thickness is h, = h,-h,, conservation of mass indicates that 

U, h, = uL h,. (3-1) 

The flow in figure 2 could not occur unless some force was applied in the -z- 
direction to  deflect the jet. This is manifest in a (positive) difference between the 
pressure p L  in the outgoing stream at x = + 00 and the (atmospheric) pressure p ,  
in the incoming stream from x = - 03. Bernoulli’s equation yields this pressure 
difference as 

P,-Po = ipP(ui-u3, (3.2) 

noting that h, < h, implies u, < u, and pL-p ,  > 0. 
Now horizontal momentum balance demands that the net force (p,--p,)h, 

exerted by the pressure difference balances the net momentum loss due to the 
thrown-forward jet, namely that of magnitude pui h, in the jet itself (of speed uo and 
thickness h,), plus the difference pu: h,-pu2, h, in the incoming and outgoing stream 
momenta. (This momentum balance can be given a more formal derivation by 
integrating Euler’s equation on a suitable control surface.) That is, 

~ p ( ~ ~ - u ~ ) h ,  = p ~ ~ h , + p u ~ h , - p u ~ h , ,  (3.3) 

or, using (2.3) for the jet thickness h,, 

Eliminating h, by use of (3.1) yields 

or 

(3.4) 

(3.6) 

Equation (3.6) is of fundamental importance in this problem. As it stands, it 
provides the outgoing flow speed relative to that incoming, as an explicit function of 
the ratio between outgoing and incoming water depths in the leading-edge region. 
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FIGURE 2. Flow in the inner (leading-edge) region. Streamlines shown are exact computations 
for a contraction ratio of 0.5. 

Alternatively, we can re-introduce the depth h, by (3.1), showing that the same 
function determines the contraction ratio A ,  i.e. 

(3.7) 

which provides a relation connecting all three depths h,, hL, h,. This relation has 
already been quoted in $1, in the form of an equation (1.3) for h, as an explicit 
function of h, and h, Note the equivalent formulae 

and 

hL - 4 
h, ( l + h ) * ’  

(3.8) 

(3.9) 

expressing the leading and trailing depths (relative to  the undisturbed depth)as 
functions of the contraction ratio A. 

An alternative method for establishing the relations (3.6)-(3.9) is to solve the 
problem sketched in figure 2 explicitly, and this is done in the Appendix. 

4. Outer region beneath the skimmer 
Now we must match the leading-edge flow whose properties were outlined in the 

previous section to flow in an outer region of horizontal extent O(Zw), as indicated in 
figure 3. I n  this region, uL is to be interpreted as the apparent entry velocity at 
x = xL to a channel of decreasing height h(x), which ends a t  the trailing edge x = xT, 
where the flow must have returned to its free-stream velocity u,. Since the horizontal 
scale I ,  = xT-xL is so far in excess of the vertical scale h, the flow in this channel is 
one-dimensional, and thus its horizontal velocity u(z)  satisfies the one-dimensional 
continuity equation u(z)h(x) = constant = uohT. 
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FIGURE 3. Outer flow parameters. 

Now the pressure in this one-dimensional flow beneath the skimmer is 

p(x) = po+~p[u~-u(x)2] = P o + ’  ZP u2 o [  1-- 

Given any clearance function h(x)  is determined by the given under-surface shape 
of the skimmer, and the trailing-edge height hT-h(x,), (4.2) provides the pressure 
everywhere on the skimmer’s wetted surface aft of the leading edge, and hence 
enables determination of the forces on it. The contribution to these forces from the 
jet is negligible even if it wets the skimmer well forward of xL. The jet has a pressure 
different from atmospheric only in the vanishingly-small leading-edge region. Thus 
the net lift force per unit span is 

and the anticlockwise pitching moment about the trailing edge is 

M = [: (x-xT) [ 1 -41 dx. 
h W 2  

(4.3) 

(4.4) 

These formulae provide known forces only if we already know the location x = x,  
of the leading edge. But this is defined as the value of x a t  which the height is hL, i.e. 

h, = h(XL). (4.5) by 

That is, if the shape function h(x) is given, and we use (3.7) as a formula to determine 
h,, given both h, and h,, we can solve (4.5) for xL, hence find the wetted length 
I, = xT-xL, and the force and moment. Once again, it is the fact that the wetted 
length is not known in advance that provides the unique feature of this problem. 
Since the forces on the skim&er (including viscous drag via skin friction) are 
particularly sensitive to  wetted length, this feature is of vital importance in the 
skimmer’s dynamics, and has not been taken into account in previous analyses such 
as that of Edge (1968). 

In  fact, the above is not even the end of the story regarding the true input-output 
nature of the problem, since in practice even the trailing-edge height h, is not known 
in advance. What we do know is the net lift F ,  balancing the weight, and the net 
moment M via the centre of pressure (known from the point of application of that 
weight, i.e. the location of the rider’s foot relative to the trailing edge). Nevertheless, 
let us temporarily assume xL and xT known, and determine F and M ,  inverting the 
results a t  the end. 
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For example, suppose that the skimmer is a rigid flat plate a t  angle of attack a 
(itself temporarily assumed known, but really an output quantity). Then 

h(x) = hT-a(X-X,), (4.6) 

F = &u: 1,( 1 - A ) ,  (4.7) 

and M = I  4P u ; W - 1 - P ) >  (4.8) 

and the integrals (4.3), (4.4) for the force and moment can be evaluated explicitly. 
The result (Tuck 1981) is 

where h is the contraction ratio, as defined in (2.1), and ,u is a specific function of A, 
namely 

Thus the centre of pressure lies at x = x p ,  a distance I, = xT-xp ahead of the 
trailing edge, where 

1 - - -M/F = ilw P -  (4.10) 

It is convenient to now take 1, as our fundamental length, defining a lift coefficient 

(4.1 1) C, via F = $pug 1, C,. 

If the speed uo, the weight F ,  and the centre of pressure ( = centre of gravity) location 
1, relative to the trailing edge are all given quantities for a fluid of given density p, 
then so is this coefficient C,, and it is appropriate to express all output quantities in 
terms of this true input parameter C,. 

But (4.7), (4.10) and (4.11) together imply that 

2( 1 - A)2 

cF= l-A+p 
(4.12) 

is a known function of A. Hence, given C,, we now know the contraction coefficient 
A.  Then (3.8) and (3.9) give the leading and trailing depths, relative to the 
undisturbed depth. Finally, the angle of attack is given by 

a=- hL - hT 
1, ’ 

i.e. the scaled angle of attack of al,/h, is also a known function of A ,  and hence of 
C, . 

5. Results 
Figures 4 and 5 show output quantities as functions of C,. These are computed by 

first determining all variables (including C,) as functions of A ,  then re-plotting as 
functions of C,. I n  figure 4 we give the vertical scale ratios hL/h, and hT/ho, and in 
figure 5 the horizontal scale ratios lw/lp and alp/h,. 

When the skimmer is lightly loaded, i.e. C, is small, obviously it penetrates the 
water surface only a small amount at its trailing edge, with a small angle of attack 
and a small rise of water level at the leading edge. In  this small-disturbance limit, 
the centre of pressure location is at the one-third chord point (Tuck 1981), so that 
lw/lp = 1.5. This is favourable for flight, since there is minimum drag and vanish- 
ingly small splash. 

As C ,  increases, the angle of attack increases rapidly, as does the leading-edge 



Surf-skimmer planing hydrodynamics 

41 

0 0.5 1 .o 1.5 2.0 
CF 

FIGURE 4. Leading- and trailing-edge heights, as functions of the lift coefficient based on 
distance between centre of pressure and trailing edge. 
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FIGURE 5. Wetted length and angle of attack, as functions of the lift coefficient based on 
distance between centre of pressure and trailing edge. 
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water rise, and hence the jet thickness. The trailing edge dips more and more into the 
undisturbed water, that is, the skimmer skims more. 

This continues until the trailing edge hits the bottom, and according to the present 
theory, this occurs a t  C ,  = 2. As we approach that point, the predicted leading-edge 
height approaches 4 times the undisturbed water height, i.e. the water rises by an 
amount equal to 3 times its undisturbed height at that point. Since in that limit the 
flux emerging at the trailing edge tends to zero, all of the incident stream is skimmed 
into the jet. There is no flow beneath the skimmer; hence the pressure is uniform, and 
the centre of pressure has moved to mid-chord, i.e. Zw/lp = 2.0. The actual small- 
velocity flow that remains as this limiting situation is approached is not given in 
detail by the present asymptotic analysis, but would need a carefully matched theory 
in which the leading-edge zone is no longer assumed as small as O(h,). 

The skimmer cannot fly if C, > 2. That is, we have found an effective upper bound 

F < pug I,, (5.1) 

on the weight, or equivalently a lower bound 

on the speed a t  which a skimmer of weight F can fly. Note that I, is beneficial ; you 
can fly slower by putting your weight further forward. 

6. Conclusion 
In this paper we have analysed only perhaps the simplest possible model for a surf 

skimmer, in which viscosity, gravity, finite water depth, and lateral flow, are all 
neglected. Nevertheless, novel features of this planing problem are treated carefully, 
including the all-important indeterminancy of the wetted length, and the final results 
can be used to predict actual dynamics of ridden boards. Extensions of the prescnt 
work to account for some of the above neglected effects are being considered. 

Support by the Australian Research Council is gratefully acknowledged. 
Discussions with and demonstrations by Max Haselgrove have been particularly 
valuable to the authors. 

Appendix. Exact inner solution 
It is convenient to scale the flow of figure 2 by use of the jet thickness h, as a 

lengthscale and the incident stream speed uo as a velocity scale, defining a non- 
dimensional complex coordinate 

2=7C-, (A 1)  
x+iy 

h, 
and a non-dimensional complex velocity potential 

Then f ( x )  is a member of a one-parameter family, the parameter 

4h -. . 
Y=- (1  - A ) 2  
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FIGURE 6. Conformal mapping of the leading-edge flow domain. 

being related to the contraction coefficient A. The solution can be obtained by 
hodograph methods, and the final result is 

f = - log ( t  - 1 )  - y log ( t  + y )  1 (A 4 )  

where z = - ( y  + 2) log ( t  + y )  +log ( t  - 1 )  - 4i(y + 1 )+ arctan (s). ( A 5 )  

Equation (A 5 )  maps the region of flow to the upper half t-plane, as shown in figure 
6, the correspondence between points d-9 being easy to check directly. The non- 
dimensional complex velocity is 

whose magnitude takes a constant (unit) value as required on the free streamline 
d9W, where t is real and t > 1. Also df/dz is real on the remainder of the real t-axis, 
guaranteeing that these boundaries are horizontal impermeable walls. 

The properties of the mapping (A 5 )  yield immediately relations equivalent to 
(3.6)-(3.9). For example, the following jumps in the (non-dimensional) y-coordinates 
are observed : 

(A 7 )  i [Im 215 = n, 
[Im 215 = ny,  
[Im 21; = n(2 + y + 2(1+ y);). 

The first of these jumps confirms the scaling (A 1)  with respect to the jet thickness 
hJ, the second shows that the parameter y can be identified with the ratio between 
the non-jet and jet portions of the incident stream, namely 

Y = hT/hJ,  (A 8) 
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while the last jump is equal to  nyfh, and hence confirms (3.7). Note also that as 
t +- y ,  i.e. as we approach the outgoing stream uL a t  %'3, (A 6) gives 

1 = A, 3 -  - Y 
u g  2 + y + 2 ( l + y ) i  

confirming (3.6). 

is vertical occurs at  t = 2 ,  we can easily compute the horizontal separation 
Since the stagnation point € occurs a t  t = 0 and the point where the free surface 

2 ( y  + 1)hog ( y  + 1);- '1 
hJ a [ Y (y+  l)i+ 1 ' 

(A 10) 
Y + 2  x8-xg = - (y+2)log-- 

between these points, and as stated in $ 2 ,  i t  is necessarily O(h,) for any finite y =k 0. 
In the limit as y -f 00 of a very thin jet, the distance given by (A 10) approaches zero 
with h, like 6hJ/7t. At the other extreme, as y --f 0, the stagnation point € moves far 
downstream, ultimately merging with 9, and the distance given by (A 10) tends to 
infinity (on the hJ scale). The matched expansions technique formally loses its 
validity in both limits y+O and y-f 00, but nevertheless appears to  predict 
reasonable results a t  these extremes. 

The streamlines shown in figure 2 are exact calculations at  y = 1, a case in which 
(A 4 )  and (A 5 )  can be solved to yield z = z ( f )  in closed form. 
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